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A Very Strong Zero-One Law for Connectivity in
One-Dimensional Geometric Random Graphs

Guang Han and Armand M. Makowski, Fellow, IEEE

Abstract— We consider the geometric random graph where n
points are distributed uniformly and independently on the unit
interval [0, 1]. Using the method of first and second moments,
we provide a simple proof of a very strong “zero-one” law for
the property of graph connectivity under the asymptotic regime
created by having n become large and the transmission range
scaled appropriately with n.

Index Terms— Connectivity, one-dimension wireless networks,
zero-one laws.

I. INTRODUCTION

THE recent interest in geometric random graphs as models
for wireless networks has been stimulated to a large

extent by the paper of Gupta and Kumar [10]. Here, we
consider a one-dimensional random graph model which has
been studied by a number of authors, e.g., see [3], [5], [6],
[7], [8], [9], [15]:1 The network comprises n points (or nodes)
which are distributed uniformly and independently on the unit
interval [0, 1]. Two nodes are said to communicate with each
other if their distance is less than some given transmission
range τ > 0. Let P (n; τ) denote the probability that the
network (as induced graph) is connected.

Randomizing node locations makes it possible for many
graph properties (including graph connectivity) to display a
typical behavior when n becomes large and the transmission
range τ is scaled appropriately, i.e., is made to depend on n
through scalings or range functions τ : N0 → R+ : n →
τn. Typical behavior reveals itself through “zero-one” laws
whereby a given graph property occurs (resp. does not occur)
with a very high probability (as n becomes large) depending
on how the scaling used deviates from a critical scaling τ�

(which is property dependent).
For the property of graph connectivity, the critical scaling

is known to be τ�
n = log n

n , e.g., see [1], [15], with the
following rough meaning: For n sufficiently large, a communi-
cation range τn suitably larger (resp. smaller) than τ�

n ensures
P (n; τn) � 1 (resp. P (n; τn) � 0). In these references, the
precise technical meaning for suitably larger (resp. smaller)
amounts to τn = cτ�

n with c > 1 (resp. 0 < c < 1).
In this short note, we strengthen this result by showing
that the zero-one law still holds if we allow much smaller
deviations (than (c − 1)τ�

n) from the critical scaling τ�
n . This

is the content of Theorem 2.1 (discussed in the next section)
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1See also [13] for a variation on this model.

which provides already an early indication of the sharpness
of the corresponding phase transition [11]. The proof is self-
contained and uses elementary arguments based on the method
of first and second moments [12, p. 55], an approach widely
used in the theory of Erdős-Renyi graphs.

II. THE MAIN RESULT

We start with a sequence {Xi, i = 1, 2, . . .} of i.i.d. rvs
distributed uniformly in the interval [0, 1]. For each n =
2, 3, . . ., we think of X1, . . . , Xn as the locations of n nodes
(or users), labelled 1, . . . , n, in the interval [0, 1]. Given a fixed
communication range τ > 0, nodes i and j are connected if
|Xi − Xj | ≤ τ , in which case an undirected edge is said to
exist between them.

This notion of edge connectivity gives rise to an undirected
geometric random graph, thereafter denoted G(n; τ). The
graph G(n; τ) is said to be (path) connected if every pair
of users can be linked by at least one path over the edges of
the graph, and the probability of graph connectivity is given
by

P (n; τ) := P [G(n; τ) is connected] . (1)

While obviously P (n; τ) = 1 whenever τ ≥ 1, we find it
convenient to set P (n; τ) = 0 for τ < 0.

The main result of this note is given in Theorem 2.1 below.
To prepare for it, we note that there is no loss of generality
in writing any range function τ : N0 → R+ in the form

τn =
1
n

(log n + αn) , n = 1, 2, . . . . (2)

for some deviation function α : N0 → R.
Theorem 2.1: For any range function τ : N0 → R+ in the

form (2), it holds that

lim
n→∞P (n; τn) =

⎧⎨
⎩

0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.
(3)

Theorem 2.1 identifies the range function τ� : N0 → R+

given by

τ�
n =

log n

n
, n = 1, 2, . . . (4)

as the critical scaling defining a threshold or boundary in
the space of range functions. However, the conclusion (3) is
quite stronger than the one usually discussed in the literature,
namely

lim
n→∞P (n; cτ�

n) =

⎧⎨
⎩

0 if 0 < c < 1

1 if 1 < c.
(5)
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This last result still holds for any range function τ : N0 → R+

such that τn ∼ cτ�
n for some c > 0 – Here and throughout

the paper, such asymptotic equivalence is understood with n
going to infinity. Either of these equivalent forms is already
contained in Theorem 1 by Appel and Russo [1, p. 352].
More recently, Muthukrishnan and Pandurangan [15, Thm.
2.2] obtain (5) by a bin-covering technique. We summarize
the zero-one law (5) by referring to the threshold function τ�

as a strong threshold [14].
To better appreciate the difference between (3) and (5), we

write a range function τ : N0 → R+ in the form (2) as

τn = τ�
n +

αn

n
, n = 1, 2, . . . (6)

with corresponding deviation function α : N0 → R. From
Theorem 2.1, perturbations αn

n from the critical threshold yield
the one-law (resp. zero-law) provided limn→∞ αn = ∞ (resp.
limn→∞ αn = −∞) with no further constraint on α. Contrast
this with (5) where we allow only scalings of the form τn ∼
cτ�

n with c > 0 and c �= 1, so that αn ∼ (c − 1) log n .
It is now plain that (5) is indeed implied by (3). Whereas
“small” deviations of the form αn = ± log log n are covered
by Theorem 2.1, they are not covered by the zero-one law (5)
(since αn = o(log n)). Consequently, it seems appropriate to
call the critical scaling τ� a very strong (and not merely a
strong) threshold for the property of graph connectivity. This
is certainly in line with the very sharp phase transition already
aparent from the graphs available in several papers, e.g., see
[7], [9], and formally established in [11].

III. PRELIMINARIES

Fix n = 2, 3, . . . and τ > 0. With the node locations
X1, . . . , Xn, we associate the rvs Xn,1, . . . , Xn,n which are
the location of these n users arranged in increasing order,
i.e., Xn,1 ≤ . . . ≤ Xn,n with the convention Xn,0 = 0 and
Xn,n+1 = 1. The rvs Xn,1, . . . , Xn,n are the order statistics
associated with the n i.i.d. rvs X1, . . . , Xn. Also define the
spacings

Ln,k := Xn,k − Xn,k−1, k = 1, . . . , n + 1.

Interest in these quantities derives from the observation that
the graph G(n; τ) is connected if and only if Ln,k ≤ τ for all
k = 2, . . . , n, so that

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n] . (7)

It is well known [2, Eq. (6.4.3), p. 135] that for any subset
I ⊆ {1, . . . , n}, we have

P [Ln,k > tk, k ∈ I] (8)

=

(
1 −

∑
k∈I

tk

)n

+

, tk ∈ [0, 1], k ∈ I

with the notation xn
+ = xn if x ≥ 0 and xn

+ = 0 if x ≤ 0.
With the help of (8), the inclusion-exclusion formula easily

yields a closed form expression for P (n; τ). This has been
rediscovered by several authors, e.g., Godehardt and Jaworski
[8, Cor. 1, p. 146], Desai and Manjunath [3] (as Eqn (8) with
z = 1 and r = τ ), Ghasemi and Nader-Esfahani [7] and
Gore [9]. See also Devroye’s paper [4] for pointers to an older
literature.

We conclude this section with some easy convergence facts
to be used in the proof of Theorem 2.1: With 0 ≤ x < 1, it
is a simple matter to check that

log(1 − x) = −
∫ x

0

1
1 − t

dt = −x − ψ(x) (9)

where we have set

ψ(x) :=
∫ x

0

t

1 − t
dt, 0 ≤ x < 1.

The mapping x → ψ(x) is increasing and convex on the
interval [0, 1) with

0 < ψ(x) ≤ x2

2(1 − x)
, 0 ≤ x < 1. (10)

Now consider a range function τ : N0 → R+ in the form
(2). For each p > 0, provided pτn < 1, the decomposition (9)
yields

(1 − pτn)n
+ = e−n(pτn+ψ(pτn))

= e−p(log n+αn)e−nψ(pτn)

= n−pe−pαne−nψ(pτn). (11)

The next two technical lemmas rely on this observation; they
will be useful in a number of places.

Lemma 3.1: For any range function τ : N0 → R+ in the
form (2) with limn→∞ αn = −∞, we have

lim
n→∞

(1 − pτn)n
+

n−pe−pαn
= 1, p > 0. (12)

Proof. Fix p > 0. From the assumption limn→∞ αn = −∞,
we note that αn < 0 for large enough n and the form (2)
therefore implies both τn ≤ log n

n and |αn|
n ≤ log n

n on that
range, whence

lim
n→∞ τn = lim

n→∞
αn

n
= 0

since limn→∞ log n
n = 0. This already establishes that

pτn < 1 for all sufficiently large n. (13)

Still on that range, the monotonicity of ψ yields

nψ(pτn) ≤ nψ

(
p
log n

n

)
so that

nψ(pτn) ≤ p2

2
·
(

1 − p
log n

n

)−1

· (log n)2

n

by invoking the bound (10). It is now plain that

lim
n→∞nψ(pτn) = 0. (14)

To conclude, condition (13) ensures the validity of (11) for
large enough n, and (14) readily implies (12) via (11).

Lemma 3.2: Consider a range function τ : N0 → R+ in the
form (2). It holds that

lim
n→∞n(1 − τn)n

+ =

⎧⎨
⎩

∞ if limn→∞ αn = −∞

0 if limn→∞ αn = +∞.
(15)
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Proof. First, we note that

n (1 − τn)n
+ = e−αn · (1 − τn)n

+

n−1e−αn
, n = 1, 2, . . . (16)

and Lemma 3.1 (with p = 1) readily yields the conclusion
limn→∞ n(1 − τn)n

+ = ∞ when limn→∞ αn = −∞.
We also have n(1 − τn)n

+ = 0 if 1 ≤ τn, while when
τn ≤ 1, the relation (11) yields n(1 − τn)n

+ ≤ e−αn

by the non-negativity of ψ. It is now immediate that
limn→∞ n(1 − τn)n

+ = 0 when limn→∞ αn = +∞.

IV. A PROOF OF THEOREM 2.1

Fix n = 2, 3, . . . and τ in (0, 1). For each i = 1, . . . , n,
node i is said to be a breakpoint node in the random graph
G(n; τ) whenever (i) it is not the leftmost node in [0, 1] and
(ii) there is no node in the random interval [Xi − τ,Xi]. The
number Cn(τ) of breakpoint nodes in G(n; τ) is given by

Cn(τ) =
n∑

k=2

χn,k(τ)

where the {0, 1}-valued rvs χn,1(τ), . . . , χn,n+1(τ) are the
indicator functions defined by

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n + 1.

The graph G(n; τ) is connected if and only if Cn(τ) = 0, and
we have the representation

P (n; τ) = P [Cn(τ) = 0] . (17)

The basic idea of the proof is to leverage the representation
(17) in order to provide lower and upper bounds on the
probability of graph connectivity through moments of the
counting variable Cn(τ): The method of first moment [12,
Eqn. (3.10), p. 55] yields the inequality

1 − E [Cn(τ)] ≤ P (n; τ) (18)

while the method of second moment [12, Remark 3.1, p. 55]
gives the bound

P (n; τ) ≤ 1 − E [Cn(τ)]2

E [Cn(τ)2]
. (19)

With the help of (8) it is a simple matter to derive the closed-
form expressions

E [Cn(τ)] = (n − 1)(1 − τ)n
+

and

E
[
Cn(τ)2

]
= E [Cn(τ)] + (n − 1)(n − 2)(1 − 2τ)n

+.

Now, pick any range function τ : N0 → R+ in the form
(2). We shall show below that

lim
n→∞E [Cn(τn)] = 0 if lim

n→∞αn = ∞ (20)

and

lim
n→∞

E
[
Cn(τn)2

]
E [Cn(τn)]2

= 1 if lim
n→∞αn = −∞. (21)

These results readily ensure the validity of the one-law and
zero-law upon letting n go to infinity in (18) and (19),
respectively, where τ has been replaced by τn.

From Lemma 3.2, we readily see that

lim
n→∞E [Cn(τn)] =

⎧⎨
⎩

0 if limn→∞ αn = +∞

∞ if limn→∞ αn = −∞.
(22)

Next, from the expressions given earlier, we conclude that

E
[
Cn(τn)2

]
E [Cn(τn)]2

= E [Cn(τn)]−1 +
(n − 2)
(n − 1)

(1 − 2τn)n
+

(1 − τn)2n
+

. (23)

We have already shown that limn→∞ E [Cn(τn)] = ∞ when-
ever limn→∞ αn = −∞. From Lemma 3.1 (first with p = 2
and then p = 1) under this last condition, we also get

lim
n→∞

(1 − 2τn)n
+

n−2e−2αn
= lim

n→∞
(1 − τn)n

+

n−1e−αn
= 1.

It is now a simple matter to check from these facts that

lim
n→∞

(1 − 2τn)n
+

(1 − τn)2n
+

= lim
n→∞

(1 − 2τn)n
+

n−2e−2αn

[
n−1e−αn

(1 − τn)n
+

]2

= 1

and (21) follows upon letting n go to infinity in (23).
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